
Book
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala
Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors
Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

• Introduction

• Graphs

• Memory Representation of Graph

Contents for Today’s Lecture

Department of Computer Science, Punjabi University Patiala

Introduction

• This chapter introduces an important non-linear data
structure calledgraph. The data structure graph has
applications in various fields like electrical and
electronics engineering, computer science, games and
puzzles, geographical information systems etc.

• Graph theory was originated inKonigsberg Bridge
problem by Leonhard Euler, a mathematician who
developed some concepts in solving this problem.
Later, these concepts become the basis of the graph
theory.

• Frequently, we use graphs as a model for the
illustration of various practical situations.

• A graphG consists of finite set of verticesVG and finite
set of edgesEG which can be denoted by a tuple
G=(VG , EG).

• Here, the set of verticesVG represents the entities which
has names and some other attributes.

• An edge connects a pair of vertices and represents a
relationship between the two entities.

•

Graph

Graph (continued)

•A graph may be pictorially represented as shown in the
figure:

In this graph, vertices are labeled
using letters a, b, c, d and e.
Therefore,
VG ={a, b, c, d, e}
EG ={ab , be, ed , dc, ca, bc , ad}
or
EG ={e1, e2, e3, e4, e5, e6, e7}

In this graph, edge between two
vertices can be written in any
order. For example, the edge
between the verticesa andd can
be written as eitherad or da.

• Directed Graph
In case of directed graph, each edge is assigned a
direction or each edge is identified by an ordered pair of
vertices in the graph rather than an unordered pair.
The figure belowshows a directed graph:

Graph Terminology

Graph Terminology(continued)

• Undirected Graph
In case of undirected graph, no directions are associated
with the edges of the graph. The edges of the undirected
graph are represented by unordered pair of vertices.
The figure belowshows a undirected graph:

• Outdegree and Indegree
The outdegreeof a vertexv in a directed graphG is the
number of edges starting fromthe vertexv.
The indegree of a vertexv in a directed graphG is the
number of edges terminating atv.

Graph Terminology(continued)

The vertex a has indegree=1 and
outdegree=1.

The vertex c has indegree=2 and
outdegree=1.

• Source and Sink
A vertex v is known assourceif its outdegree is one
or more than one but its indegree is zero.
A vertex v is known assink if its indegree is one or
more than one but its outdegree is zero.
The following figure represents source and sink

Graph Terminology(continued)

node d is a sourceand node
a is a sink.

Graph Terminology(continued)

• Adjacent Vertices
Two vertices are said to be adjacent if there is a
direct edge between them. In a graphG, the vertexvi
said to be adjacent to vertexvj if there is an edge
betweenvj andvi. Vertex a is adjacent to vertex b but

vertex b is not adjacent to vertex
a.

• Path
In a graph, a path fromvertex vi to vj is a sequence of
vertices each adjacent to the next. Length of such a path is
the number of edges in the path.
A path withn length will haven+1 vertices.

Graph Terminology(continued)

In graph:
a b e is a path
a c d eis a path
a c b eis a path
a e d c is not a path
as a and e are not
adjacent.
a b d is not a path
as b and d are not
adjacent.

Graph Terminology(continued)

1. A path is said to besimple if all the nodes on the path are
distinct with the condition that starting vertex and terminal
vertex should not coincide.

2. A closed pathis a simple path in which starting vertex and
terminal vertex are the same with the condition that there
should be minimumthree edges in the path.
A closed path is also known ascycle.

In the graph
a b e d cis a simple path
a d e b is a simple path
a b e is a simple path
a b c ais a cycle.
a b e d c a is a cycle
a c d ais a cycle

3. A path is said to be aHamiltonian path if it contains all the
vertices in the graph.
The following figure represents a Hamiltonian path:

Graph Terminology(continued)

a b c d is a Hamiltonian path.

• An edge is called aloop when its starting vertex and
terminal vertex are the same.
A simple graph usually does not allowloops.
In the following graph, the edgee5 is a loop as its initial
and terminal vertex is same i.e.b.

Graph Terminology(continued)

Graph Terminology(continued)

• Connected Graph
A graph G is said to beconnectedif no node in the
graph is isolated.
If the graph is undirected then every pair of nodes in the
graph will have a path. Consider a graph having 9
verticesa, b, c, d, e, f, g, h and i.

• Unconnected Graph
A graphG is said to be unconnected if there is no path
between any of the vertices.
In the given graph there is no path between the vertices
f, g, h, i and the verticesa, b, c, d, e. thus it is
unconnected graph.

Graph Terminology(continued)

• Strongly Connected Graph

A directed graphG is calledstrongly connected,if
there exists a path between each pair of its vertices.
For example, if there is a path between the verticesvi
andvj, then there must also be a path betweenvj and
vi.

In a strongly connected graph there, there must not be
any source or sink.

Graph Terminology(continued)

• Weakly Connected Graph

A directed graphG is called weakly connected,if
there does not exists a path between each pair of its
vertices.

The following graph is a weakly connected graph as
there is no edge starting fromvertexc.

Graph Terminology(continued)

• Weighted Graph

A graph G is said to be weighted if edges in it are
assigned with weights.

This is often desired to represent certain physical
attributes/properties by means of graph.

In case of weighted graph, an edge is represented as:

e={v1, v2, w} , wherev1, v2 are the vertices making an
edge andw is the weight of the edge.

For example, the edges of the graph in the figure
are assigned weights

Graph Terminology(continued)

Graph Terminology(continued)

In the graph, the weights assigned to the edges
represents the distance between cities, where the
vertices represent different cities.

Graph Terminology(continued)

• Multigraph
A graphG is said to be multigraph if it contains multiple
edges or loop in it.
For example, the graph belowis a multigraph as it
contains a loop at vertexc and multiple edges
between the verticesa andb.
A simple graph does not allowany loop or multiple
edges, or cycle in it.

Memory Representation of Graph

Graph can be represented into the computer memory using
various ways.
The two standard approaches for representing graph are:

1. Sequential Representation by using the Adjacency Matrix
2. Linked List Representation

Memory Representation of Graph(contd…)

1. Adjacency Matrix Representation of Graph
• SupposeG = {Vg, Eg} is a directed graph havingn nodes.

Suppose, vertices are ordered by usingv1, v2, v3, v4, …,
…,…vn . Then adjacency matrixA for the graphG will
be a square matrix of ordern such that:

aij = 1 if an edge lies between the verticesvi andvj
0 if there is no edge between the verticesvi andvj

The adjacency matrix of a graph depends upon the ordering
of its vertices.
If we change the order of vertices in a graph then it will
result in a different adjacency matrix.

Memory Representation of Graph(contd…)

Adjacency matrix formed after changing the order of
vertices will be closely related to the preceding one.
Consider, a directed graphG having vertices
VG = {a, b, c, d, e}

Memory Representation of Graph(contd…)

The adjacency matrix corresponding to this ordering
sequence will be:

Memory Representation of Graph(contd…)

• Incase of undirected graph, the adjacency matrix will be
symmetric, as there will be two entries in the matrix
corresponding to each edge in the graph.
To represent an undirected graph using the adjacency
matrix, it is sufficient to store either the upper triangular
or the lower triangular matrix.
Consider an undirected graph:

Memory Representation of Graph(contd…)

The vertices of the above undirected graph,VG = {a, b,
c, d, e}.
The adjacency matrix for the above graph will be:

• A weighted graph can also be represented into the
computer memory using the adjacency matrix
representation.
In case of weighted graph, the weight of each edge
(vi, vj) in the graph is stored in the respective rowand
column of the adjacency matrix.
In the weighted graph, an edge can also have zero
weight. In this case, we have to use some sentinel value
for representing the absence of edge.
Consider a weighted graphG having vertices
VG = {a, b, c, d, e}.
The weighted graph and corresponding adjacency
matrix is as below:

Memory Representation of Graph(contd…)

Memory Representation of Graph(contd…)

Memory Representation of Graph(contd…)

The adjacency matrix representation has a number of
drawbacks.

• It is difficult to store additional information about the
vertices and edges in the graph

• One major problemin this representation is its static
nature. Before storing any graph, it is necessary to find
the number of vertices in it.

• It is very difficult to insert and delete the vertices from
the graph in adjacency matrix representation, as it
requires change in the dimensions of the matrix.

• In adjacency matrix representation, the space for each
possible edge in the graph is reserved.

Memory Representation of Graph(contd…)

• For example, Consider the case of a graphG with n
vertices and a small number of edges as compared to the
n2 entries in its adjacency matrixA, and then the matrix
A will definitely be sparse. Hence, a huge amount of
space is wasted.

• So, this representation is very inefficient for large graphs
with large number of vertices which are connected by
very small number of edges.

Memory Representation of Graph(contd…)

2. Adjacency List or Linked Representation of Graph
In this representation, each vertex in the graph is a node
in a master linked list structure.
Another Linked list starts fromeach vertex node and
denotes the vertices which are directly adjacent to a given
source vertex.
This method, often called an adjacency list, is more space
efficient than the adjacency matrix representation.
Consider a graphG having verticesVG = {a, b, c, d, e}as
in the following figure:

Memory Representation of Graph(contd…)

Adjacency List of
Nodes

a b
b c, e
c d
d b
e a, d

Memory Representation of Graph(contd…)

Adjacency List Representation of Graph shown above is
as below:

